
ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 47

An Evaluation of Queuing Delay in the Latency

of Internet Network Architecture

Rahul Kumar Sharma
1
, Pragya Kamal

2
, Mayank Deep khare

3
, Amrendra Singh Yadav

4

Assistant Professor, Department of Computer Science & Engineering, NIET, Greater Noida, India1,3,4

Assistant Professor, Department of Computer Science & Engineering, BIT, Gorkhpur, U.P. India2

Abstract: This paper is the analysis of various factors which influence to the speed and performance of the

communication network. Online games, bank transaction etc are required to be minimum time to perform because if it

takes a lot of time then the player or user would be irritated and never want to use this service again. So we describe

here about latency, which occur due to the queuing delay in database in the network architecture. We give elaborate to

queue and queuing delay in the term of buffer, MAC buffering, scheduling, Queue management also.

Keywords: MAC Buffering, FQ, RR, DRR.

I. INTRODUCTION

Delays from packet queuing at devices along the end-

toend path, in general, contributes the largest delays to the

flight latency. This latency originates from contention for

either the switching fabric or the output interface.

Provisioning sufficient resources will always reduce (or

eliminate) contention, but at the expense of decreased link
utilization. Input and/or output buffering is needed to

ensure high utilization with bursty network traffic, but

inevitably leads to building queues. The overall effect of

queuing delay is complex, with buffering often present in

each device and each network layer or sub-layer. In this

section the term buffer will refer to the resources available

to queue packets, and the term queue will refer to the

amount of buffer space being used.

Managing queues for quality of service metrics, including

latency, was a very active area of research until Dense

Wave Division Multiplexing (DWDM) made core network

over provisioning a cost-effective approach to support
latency sensitive traffic [1]. More recently, latency and

network buffering issues have again received attention

through the efforts of Gettys, who coined the term buffer

bloat to describe the over-abundance of buffering

resources in several parts of typical Internet paths. Large

queues can induce high latency at any congested point on

the end-to-end path.

II. EFFORT OF REDUCE QUEUING DELAY

Currently this is 18 mainly an issue at the edge of the
network, but the problem will increasingly affect the core

as network access speeds increase. Efforts to reduce

queuing delays along the path can be divided into seven

approaches:

1) Flow and circuit scheduling,

2) Reducing MAC buffering,

3) Smaller network buffers,

4) Packet scheduling,

 5) Traffic shaping and policing,

 6) Queue management, and

7) Transport-based queue control.

1) Flow and circuit scheduling

A network device can avoid queuing delays by directly

connecting its inputs and output ports (as in e.g. optical

switches used to handle the high rates in the core of the

Internet or in data centres). There are many types of

optical switching [2], but two main categories: Circuit

switched (wavelength, fibre or time slot) and

connectionless (packet and burst). The former requires the

a priori set up of an all optical path from ingress to egress,

resulting in less statistical multiplexing. However, after a

path has been established, there is no S[IOL] delay and SF

has also potentially been reduced. For data travelling along
this path, delay will be the speed of light in the fiber times

the distance. If such a path is not available, data may have

to wait for a path to be created, or may have to be routed

via another egress, resulting in a temporary increase in

latency and jitter. Since only small optical buffers are

currently feasible, designs for optical burst and packet

switches have almostno buffering delay. Currently, optical

burst switching is the most practical of the connectionless

optical switching techniques. In burst switching, packets

destined for the same egress are collected in a burst buffer

at the ingress and sent in a group. This reduces or removes
the need for buffering in the network, but can increase the

overall end-to-end latency due to the additional ingress

buffering. Optical packet switches are still an area of

active research, and developments may help improve

latency compared to burst switching because they do not

require the extra ingress buffering of optical burst

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 48

switching. Both burst and packet switching may involve

tuning wavelength converters, configuring Micro-Electro-

Mechanical- System (MEMS) switches, and/or

wavelength selective switches. Depending on the

architecture, switching delays of the order of 100–300 ns

may be achievable resulting in these being no slower than

electrical switches.

2) Reducing MAC buffering

Buffering at or below the MAC layer is present for a range

of reasons, including: traffic differentiation; header
compression; capacity request/medium access, FEC

encoding/interleaving, transmission burst formation;

handover and ARQ. While systems are typically designed

for common use-cases, a large number of independently

maintained buffers can add significant amounts of latency

in ways that may not be immediately obvious [3]: e.g.

when traffic patterns change, the radio resource becomes

congested, or components of the system are upgraded

revealing buffering in a different part of the network stack.

Network devices have moved from a position where under

buffering was common to where MAC buffer bloat can

now significantly increase latency, with latencies of many
seconds not uncommon in an un-optimized system.

Delays can also result as a side effect of other link

protocols. For example, some Ethernet switches

implement a type of back pressure flow control using

IEEE 802.3X PAUSE frames [4]. If the input queue of a

downstream switch is full, a switch can send a PAUSE

frame to causes upstream devices to cease transmission for

a specified time. This mechanism can avoid loss during

transient congestion, but sustained overload can result in a

cascading effect that causes the buffers of switches along a

path to be filled – dramatically increasing the path latency.
Anghel et al. show that use of PAUSE frames in data

centres can improve flow completion times, but that care

is needed in setting the thresholds in switches and ensuring

that there is end-system support. Priority Flow

Control (PFC) is an enhancement that can reduce delay for

latency sensitive flows by allowing the PAUSE to specify

a particular class of traffic in IEEE 802.1Qbb.

In general, unnecessary buffering below the IP level needs

to be eliminated to improve latency. Where possible,

packets should be buffered in the IP layer using Active

Queue Management (AQM) methods [3]. This can require

a redesign of the architecture to enable coordination
between protocol entities, avoiding the pitfalls of direct

implementation of a large number of independent layers

and construction of individually buffered ―pipes/streams‖

across the lower layers.

3) Smaller network buffers

The most effective means of reducing queuing delay is to

reduce the size of buffers in each device along the end-to

end path, this limits the maximum queue size. An early

buffer dimensioning rule-of-thumb [5] recommended that

buffers should be sized proportional to the line rate times

the RTT

(B = RTT _ C), the Bandwidth Delay Product (BDP), but

this is now known to be excessive.

Appenzeller et al. investigated whether BDP sized buffers

are required for high utilization in core routers, and

showed that core router buffers can take advantage of a

high degree of statistical multiplexing and reduce BDP

sized buffers by a factor of

p

n, B = RTpT_C
n , where n is the number of concurrent flows on the link.

Further reductions are possible

if the full utilization constraint is relaxed, though

Dhamdhere and Dovrolis [6] raised concerns of higher

loss rates and thus lower TCP throughput. The work by

Appenzeller et al. and an update spawned a number of

studies and proposals. Vishwanath et al. surveyed and

critiqued much of this work and conducted experiments

with mixed TCP and UDP traffic. They concluded that

small buffers make all-optical-routers more feasible. As

well as reducing latency, Havary-Nassab et al. showed that

small buffers make the network more robust against
Denial-of-Service (DoS) attacks.

Although work on reducing buffer sizes in the core

network is necessary and important for the future, most

current congestion is closer to the network edges, where

there is not

a high degree of statistical multiplexing. Chandra divides

congestion into packet-level and burst-level congestion.

Packet-level congestion only requires small buffers,

however congestion due to traffic burstiness and

correlations requires much larger buffers. For this reason,

small buffers at lightly multiplexed network edges require
traffic to be smoothed or paced to avoid burst-level

congestion and allow smaller buffers.

Optimizing buffer sizes for various scenarios is still an

area of research. A trade-off will remain between latency,

utilization and packet loss—with latency expected to

become more critical.

4) Packet scheduling

Packet scheduling can also impact latency. A scheduling

mechanism allows a network device or end point to decide

which buffered packet is sent when multiple packets are

queued. Internet hosts and network devices have by
default used first-in-first-out (FIFO) scheduling, which

sends the oldest queued packet first. This can cause head-

of-line blocking when flows share a transmission link,

resulting in all flows sharing an increased latency. There

are, however, a wide variety of queue scheduling

mechanisms and hybrid combinations of mechanisms that

can either seek to ensure a fair distribution of capacity

between traffic belonging to a traffic class/flow (class/flow

isolation), or to prioritize traffic in one class before

another. These methods can reduce latency for latency-

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 49

sensitive flows. This section does not seek to explore all

scheduling methods, but will highlight some key

proposals.

a) Class based: Some scheduling mechanisms rely on

classifying traffic into one of a set of traffic classes each

associated with a ―treatment aggregate‖. Packets requiring

the same treatment can be placed in a common queue (or

at least be assigned the same priority). A policy apportions

the buffer space between different treatment aggregates

and a policy determines the scheduling of queued packets.

Different classes of traffic may receive a different quality
reflecting their latency and other requirements, so

scheduling with this knowledge can have positive impacts

on reducing latency for latency-sensitive flows. A router

or host-based model implements scheduling in individual

routers/hosts without reference to other devices along the

network path . This is easy to deploy at any device

expected to be a potential bottleneck (e.g., a home router),

although it does not itself provide any end-to-end quality

of service (QoS).

A more sophisticated model aligns the policies and classes

used by the routers across a domain, resulting in two basic

network QoS models: The differentiated services model
[7] aligns the policies configured in routers using the

management plane to ensure consistent treatment of

packets marked with a specific Differentiated Services

Code Point (DSCP,) in the IP packet header (i.e. devices

schedule based only on treatment aggregates). In contrast,

the integrated services model uses a protocol to signal the

resource requirements for each identified flow along the

network path, allowing policies to be set up and modified

in real-time to reflect the needs of each flow. Both models

can provide the information needed to control the delay of

traffic, providing that delay sensitive traffic can be
classified. The integrated services model is best suited to

controlled environments, e.g. to control latency across an

enterprise domain to support telepresence or other latency-

sensitive applications.

Fig1:-Sharing of available capacity by two flows,

illustrating the different between FIFO, FQ/RR and EDF

scheduling . Flow F1 has deadline D1 and flow F2 had

deadline D2

b) Flow based: Flow based queuing allows a scheduler to

lessen the impact that flows have on each other and to

discriminate based on flow characteristics. A key example

of this is Fair Queuing (FQ), proposed by Nagle and

Demers et al., which aims to improve fairness among

competing flows. This ensures that queuing delays

introduced by one (possibly misbehaving) flow do not

adversely affect other flows, achieving fairness. FQ has

been adapted and extended in many different ways

including: weighted FQ, and practical approximations

such as Round Robin (RR) scheduling and Deficit RR

(DRR) . In practical implementations, there may be a limit

to the number of queues that can be implemented, hence
stochastic fair queuing (SFQ McKenney [8]) and similar

methods have been proposed to eliminate the need for a

separate queue for each traffic flow.

Per-flow classification requires a flow classifier to

discriminate packets based on the flows to which they

belong and deduce their required treatment. In the router

or host-based model this function is performed at each

router and requires visibility of transport protocol headers

(e.g. protocol and port numbers), whereas in the

Differentiated or Integrated models visibility is required at

the edge of the QoS domain. When tunnels are used, all

tunnel traffic is generally classified as a single flow (an
exception could be the use of the IPv6 Flow Label to

identify sub flows). This can add latency by assigning all

traffic that uses a VPN tunnel to the same queue, besides

the obvious processing cost of encryption and decryption.

c) Latency specific: Some schedulers schedule packets to

achieve a low or defined latency. The simplest is Last-In-

First-Out (LIFO), which minimizes the delay of most

packets—new packets are sent with a minimum delay at

the expense of packets already queued. Unfortunately, this

method also maximizes the delay variance and reorders

packets within a flow.
Deadline-based schemes attempt to bound the latency of a

queue, e.g. Earliest Deadline First, where jobs (or packets)

are scheduled in the order of their deadline. for two flows

with different deadlines; both flows can meet their

deadlines if the flow with the earliest deadline is scheduled

first. Unfortunately, these methods fail to provide good

performance under overload.

Shortest Queue First (SQF) is a flow/class based scheduler

that serves packets from the flow/class with the smallest

queue first. It has been proposed for reducing latency in

home access gateways. Carofiglio and Muscariello [9]

show that the SQF discipline has desirable properties for
flows that send less than their fair share, such as thin

latency-sensitive flows and short flows, at the expense of

bulk throughput-sensitive flows.

d) Hierarchical scheduling: In many networks it is normal

to create a hierarchy of scheduler treatments, in which

some classes of traffic are given preferential or worse

treatment by the scheduler, to achieve different treatments

for the traffic. For example the Expedited Forwarding

(RFC 3246) differentiated services class assigns a

treatment that offers low loss and low latency. Class-based

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 50

queuing (Floyd and Jacobson [10]), hierarchical packet

fair queuing [11] and 802.11e QoS enhancements for

WLANs provide such methods. Any priority-based

algorithm needs to correctly classify the traffic in a way

that guarantees the required treatment. This typically

requires a policing (or traffic-conditioning) function to

prevent misuse. In the integrated and differentiated

services model this conditioning may be provided at the

domain edge.

5) Traffic shaping and policing
Traffic shapers smooth traffic passing through them using

a buffer to limit peak transmission rates and the length of

time these peak rates can be maintained. While shaping

can help prevent congestion—and therefore delay further

along the path—, it does so at the expense of delay

introduced at the shaper. The foundational traffic shaping

algorithms are the leaky bucket algorithm and the related

token bucket algorithm. Traffic shapers are used

extensively in the Internet, though often to reduce ISP

costs rather than to reduce delays along the path.

Traffic policers drop packets that exceed a specified peak

transmission rate, peak burst transmission time, and/or
average transmission rate. Policing was first proposed by

Guillemin et al. [12] for ATM networks, but is still an

effective tool for managing QoS, especially latency, in the

Internet. Briscoe et

al. [13] propose a policing mechanism that could be used

either to police the sending rate of individual sources (e.g.

TCP) or, more significantly, to ensure that all the sources

behind the traffic entering a network react sufficiently to

congestion, as a combined effect, without constraining any

flow individually. This developed into the IETF

Congestion
Exposure work to enable a number of mechanisms,

especially congestion-based policing, to discourage and

remove heavy sources of congestion and the latency they

cause.

6) Queue management

Network devices can monitor the size of queues and take

appropriate action as the queue latency builds; this is

known as queue management. Techniques such as drop

tail and drop front are said to be passive. In contrast,

Active Queue Management (AQM) techniques manage

queues to achieve certain queue loss and latency
characteristics by proactively marking or dropping

packets; which signal to endpoints to change their

transmission rate. AQM mechanisms generally work in

combination with scheduling, traffic shaping, and

transport-layer congestion control. Adams [14] provides

an extensive survey of techniques from Random Early

Detection

(RED Floyd and Jacobson [15]), introduced in 1993,

through to the year 2011. This section looks at more recent

contributions, with a specific focus on latency.

a) PIE and CoDel: Two current proposals aim to minimize

the average queuing delay: Proportional Integral controller

Enhanced (PIE Pan et al. [16]) and Controlled Delay

(CoDel Nichols and Jacobson [17]), and more recently, a

per-flow queuing version of CoDel called FQ-CoDel.

The PIE algorithm uses a classic Proportional Integral

controller to manage a queue so that the average queuing

delay is kept close to a configurable target delay, with a

current default value of 20 ms. PIE does this by using an

estimate of the current queuing delay to adjust the random
ingress packet drop or marking probability. The algorithm

selftunes its parameters to adapt quickly to changes in

traffic. PIE tolerates bursts of packets up to a configurable

maximum, with a current default value of 100 ms. CoDel

attempts to distinguish between two types of queues,

which the authors refer to as good queues and bad

queues— that is, queues that simply buffer bursty arrivals,

and those just creating excess delay. Although the default

target delay is 5 ms, it allows temporary buffering of

bursts which can induce delays orders of magnitude larger

than the target delay. Packets are dropped or marked at

deterministic intervals at the head of a queue.
Dropping/marking at the queue head decreases the time

for the transport protocol to detect congestion. Combining

this with the flow isolation of a fair queuing scheduler

avoids packet drops for lower-rate flows.

Both schemes attempt to keep configuration parameters to

a minimum, auto tune, and control average queue latency

to approach a target value. Both exhibit high latency

during transient congestion episodes. Use of smaller

buffers would prevent this, but this is an area that requires

further research.

b) DCTCP and HULL: Data Centre TCP (DCTCP

Alizadeh et al. [18]) is illustrated in Fig. 2. It uses an

AQM method that has been designed to keep queuing

delay and delay variance very low, even for small numbers

of flows including a single flow. The method appears

deceptively simple; it merely marks the ECN field of all

packets whenever the queue exceeds a short threshold.

The AQM for DCTCP signals even brief excursions of the

queue, in contrast to other AQMs that hold back from

signalling until the queue has persisted for some time.

Even though existing switches often only implement RED,
they can avoid introducing signalling delay by simply

setting their smoothing parameter to zero. High bandwidth

Ultra-Low Latency replaces the AQM algorithm in

DCTCP. It aims to keep the real queue extremely short by

signalling ECN when a virtual queue exceeds a threshold.

A virtual queue is a token bucket- like counter that fills at

the real packet arrival rate, but drains slightly more slowly

than the real line. A growing range of commercial

equipment natively supports virtual queues, often using

two hardware leaky buckets.

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 51

7) Transport-based queue control

A number of transport layer mechanisms have been

proposed to support low queuing delays along the end-to-

end

Fig 2:- How Data Centre TCP (DCTCP) reduces delay

without lowing utilization

path. Two key elements are: burstiness reduction and early

detection of congestion.

a) Coupled congestion control: When multiple flows that

originate from the same endpoint traverse a common

bottleneck, they compete for network capacity, causing

more queue growth than a single flow would. Detecting

which flows share a common bottleneck and coupling

their congestion control can significantly reduce latency,

as shown with an SCTP-based prototype. Solutions in this

space are planned outcomes of the IETF RMCAT working

group.

b) Burstiness reduction: A TCP session that always has
data to send typically results in paced transmission, since

the sender effectively paces the rate at which new data

segments may be sent at, to the rate at which it receives

ACK packets for old segments that have left the network.

However, this is not always the case. TCP’s window-

based congestion control together with bottleneck queuing

can result in very bursty traffic. In some implementations,

the TCP max burst function limits the maximum burst size

per received ACK, hence reducing burstiness for bulk

applications.

However, not all applications continuously have data to

transmit (e.g. when a server responds to requests for

specific data chunks, or when a variable rate video session

experiences a scene change). There may therefore be

periods in which no TCP data are sent, and hence no

ACKs are received—or an application may use an entirely

different transport that does not generate an ACK for

every few segments. Either of these can result in bursts of

packets, and may require explicit pacing at the sender or a

traffic shaper within the network.

III. CONCLUSION

After evaluating all conditions with problems, we

concluded that if we focus on queue management with

MAC buffering and packet scheduling then we could

reduce large phase of our queuing delay problem.

REFERENCES

[1] C. Fraleigh, F. Tobagi, and C. Diot, ―Provisioning IP backbone

networks to support latency sensitive traffic,‖ in Proc. of the IEEE

International Conference on Computer Communications

(INFOCOM), vol. 1, 2003, pp. 375–385.

 [2] M. Maier and M. Reisslein, ―Trends in optical switching techniques:

a short survey,‖ IEEE Netw., vol. 22, no. 6, pp. 42–47, Nov. 2008.

 [3] C. Staff, ―Bufferbloat: what’s wrong with the internet?‖ Commun.

ACM, vol. 55, no. 2, pp. 40–47, Feb. 2012.

 [4] ―Specification for 802.3 full duplex operation and physical layer

specification for 100 Mb/s operation on two pairs of category 3 or

better balanced twisted paircable (100BASE-T2),‖ IEEE, Std.

802.3X, 1997.

[5] R. Bush and D. Meyer, Some Internet Architectural Guidelines and

Philosophy, RFC 3439 (Informational), Internet Engineering Task

Force, Dec. 2002.

 [6] A. Dhamdhere and C. Dovrolis, ―Openissues in router buffer sizing,‖

ACM SIGCOMM Computer Communications Review (CCR), vol.

36, no. 1, pp. 87–92, Jan. 2006.

 [7] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,

An Architecture for Differentiated Services, RFC 2475

(Informational), Updated by RFC 3260, Internet Engineering Task

Force, Dec. 1998.

 [8] P. McKenney, ―Stochastic fairness queueing,‖ in Proc. of the IEEE

International Conference on Computer Communications

(INFOCOM), vol. 2, 1990, pp. 733–740.

 [9] G. Carofiglio and L. Muscariello, ―On the impact of TCP and per-

flow scheduling on Internet performance,‖ IEEE/ACM Trans.

Netw., vol. 20, no. 2,pp. 620–633, Apr. 2012.

[10] S. Floyd and V. Jacobson, ―Link-sharing and resource management

models for packet networks,‖ IEEE/ACM Trans. Netw., vol. 3, no.

4, pp. 365–386, Aug. 1995.

[11] J. C. R. Bennett and H. Zhang, ―Hierarchical packet fair queueing

algorithms,‖ IEEE/ACM Trans. Netw., vol. 5, no. 5, pp. 675–689,

Oct. 1997.

 [12] F. Guillemin, P. Boyer, A. Dupuis, and L. Romoeuf, ―Peak rate

enforcement in ATM networks,‖ in Proc. of the IEEE International

Conference on Computer Communications (INFOCOM), 1992, pp.

753–758.

[13] B. Briscoe, A. Jacquet, C. Di Cairano-Gilfedder, A. Salvatori, A.

Soppera, and M. Koyabe, ―Policing congestion response in an

internetwork using refeedback,‖ ACM SIGCOMM Computer

Communications Review (CCR), vol. 35, no. 4, pp. 277–288, Aug.

2005.

 [14] R. Adams, ―Active queue management: a survey,‖ IEEE Commun.

Surveys Tuts., vol. 15, pp. 1425–1476, 2013.

[15] S. Floyd and V. Jacobson, ―Random early detection gateways for

congestion avoidance,‖ IEEE/ACM Trans. Netw., vol. 1, no. 4, pp.

397–413, Aug. 1993.

[16] R. Pan, P. Natarajan, C. Piglione, M. Prabhu, V. Subramanian, F.

Baker, and B. VerSteeg, ―PIE: a lightweight control scheme to

address the bufferbloat problem,‖ in Proc. of the IEEE International

Conference on High Performance Switching and Routing (HPSR),

Jul.2013.

[17] K. Nichols and V. Jacobson, ―Controlling queue delay,‖ ACM

Queue, vol. 10, no. 5, May 2012.

