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Abstract: This paper is the analysis of various factors which influence to the speed and performance of the 

communication network. Online games, bank transaction etc are required to be minimum time to perform because if it 

takes a lot of time then the player or user would be irritated and never want to use this service again. So we describe 

here about latency, which occur due to the queuing delay in database in the network architecture. We give elaborate to 

queue and queuing delay in the term of buffer, MAC buffering, scheduling, Queue management also. 
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I. INTRODUCTION 

 

Delays from packet queuing at devices along the end-

toend path, in general, contributes the largest delays to the 

flight latency. This latency originates from contention for 

either the switching fabric or the output interface. 

Provisioning sufficient resources will always reduce (or 

eliminate) contention, but at the expense of decreased link 
utilization. Input and/or output buffering is needed to 

ensure high utilization with bursty network traffic, but 

inevitably leads to building queues. The overall effect of 

queuing delay is complex, with buffering often present in 

each device and each network layer or sub-layer. In this 

section the term buffer will refer to the resources available 

to queue packets, and the term queue will refer to the 

amount of buffer space being used. 

Managing queues for quality of service metrics, including 

latency, was a very active area of research until Dense 

Wave Division Multiplexing (DWDM) made core network 

over provisioning a cost-effective approach to support 
latency sensitive traffic [1]. More recently, latency and 

network buffering issues have again received attention 

through the efforts of Gettys, who coined the term buffer 

bloat to describe the over-abundance of buffering 

resources in several parts of typical Internet paths. Large 

queues can induce high latency at any congested point on 

the end-to-end path.  

 

II. EFFORT OF REDUCE QUEUING DELAY 

 

Currently this is 18 mainly an issue at the edge of the 
network, but the problem will increasingly affect the core 

as network access speeds increase. Efforts to reduce 

queuing delays along the path can be divided into seven 

approaches:  

1) Flow and circuit scheduling, 

2) Reducing MAC buffering, 

  

 

3) Smaller network buffers, 

4) Packet scheduling, 

 5) Traffic shaping and policing, 

 6) Queue management, and  

7) Transport-based queue control. 

 
1) Flow and circuit scheduling 

A network device can avoid queuing delays by directly 

connecting its inputs and output ports (as in e.g. optical 

switches used to handle the high rates in the core of the 

Internet or in data centres). There are many types of 

optical switching [2], but two main categories: Circuit 

switched (wavelength, fibre or time slot) and 

connectionless (packet and burst). The former requires the 

a priori set up of an all optical path from ingress to egress, 

resulting in less statistical multiplexing. However, after a 

path has been established, there is no S[IOL] delay and SF 

has also potentially been reduced. For data travelling along 
this path, delay will be the speed of light in the fiber times 

the distance. If such a path is not available, data may have 

to wait for a path to be created, or may have to be routed 

via another egress, resulting in a temporary increase in 

latency and jitter. Since only small optical buffers are 

currently feasible, designs for optical burst and packet 

switches have almostno buffering delay. Currently, optical 

burst switching is the most practical of the connectionless 

optical switching techniques. In burst switching, packets 

destined for the same egress are collected in a burst buffer 

at the ingress and sent in a group. This reduces or removes 
the need for buffering in the network, but can increase the 

overall end-to-end latency due to the additional ingress 

buffering. Optical packet switches are still an area of 

active research, and developments may help improve 

latency compared to burst switching because they do not 

require the extra ingress buffering of optical burst 
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switching. Both burst and packet switching may involve 

tuning wavelength converters, configuring Micro-Electro-

Mechanical- System (MEMS) switches, and/or 

wavelength selective switches. Depending on the 

architecture, switching delays of the order of 100–300 ns 

may be achievable resulting in these being no slower than 

electrical switches. 

 

2) Reducing MAC buffering 

Buffering at or below the MAC layer is present for a range 

of reasons, including: traffic differentiation; header 
compression; capacity request/medium access, FEC 

encoding/interleaving, transmission burst formation; 

handover and ARQ. While systems are typically designed 

for common use-cases, a large number of independently 

maintained buffers can add significant amounts of latency 

in ways that may not be immediately obvious [3]: e.g. 

when traffic patterns change, the radio resource becomes 

congested, or components of the system are upgraded 

revealing buffering in a different part of the network stack. 

Network devices have moved from a position where under 

buffering was common to where MAC buffer bloat can 

now significantly increase latency, with latencies of many 
seconds not uncommon in an un-optimized system. 

Delays can also result as a side effect of other link 

protocols. For example, some Ethernet switches 

implement a type of back pressure flow control using 

IEEE 802.3X PAUSE frames [4]. If the input queue of a 

downstream switch is full, a switch can send a PAUSE 

frame to causes upstream devices to cease transmission for 

a specified time. This mechanism can avoid loss during 

transient congestion, but sustained overload can result in a 

cascading effect that causes the buffers of switches along a 

path to be filled – dramatically increasing the path latency. 
Anghel et al.  show that use of PAUSE frames in data 

centres can improve flow completion times, but that care 

is needed in setting the thresholds in switches and ensuring 

that there is end-system support. Priority Flow 

Control (PFC) is an enhancement that can reduce delay for 

latency sensitive flows by allowing the PAUSE to specify 

a particular class of traffic in IEEE 802.1Qbb. 

In general, unnecessary buffering below the IP level needs 

to be eliminated to improve latency. Where possible, 

packets should be buffered in the IP layer using Active 

Queue Management (AQM) methods [3]. This can require 

a redesign of the architecture to enable coordination 
between protocol entities, avoiding the pitfalls of direct 

implementation of a large number of independent layers 

and construction of individually buffered ―pipes/streams‖ 

across the lower layers. 

 

3) Smaller network buffers 

The most effective means of reducing queuing delay is to 

reduce the size of buffers in each device along the end-to 

end path, this limits the maximum queue size. An early 

buffer dimensioning rule-of-thumb [5] recommended that 

buffers should be sized proportional to the line rate times 

the RTT 

(B = RTT _ C), the Bandwidth Delay Product (BDP), but 

this is now known to be excessive. 

Appenzeller et al. investigated whether BDP sized buffers 

are required for high utilization in core routers, and 

showed that core router buffers can take advantage of a 

high degree of statistical multiplexing and reduce BDP 

sized buffers by a factor of 

p 

n, B = RTpT_C 
n , where n is the number of concurrent flows on the link. 

Further reductions are possible 

if the full utilization constraint is relaxed, though 

Dhamdhere and Dovrolis [6] raised concerns of higher 

loss rates and thus lower TCP throughput. The work by 

Appenzeller et al. and an update spawned a number of 

studies and proposals. Vishwanath et al. surveyed and 

critiqued much of this work and conducted experiments 

with mixed TCP and UDP traffic. They concluded that 

small buffers make all-optical-routers more feasible. As 

well as reducing latency, Havary-Nassab et al. showed that 

small buffers make the network more robust against 
Denial-of-Service (DoS) attacks. 

Although work on reducing buffer sizes in the core 

network is necessary and important for the future, most 

current congestion is closer to the network edges, where 

there is not 

a high degree of statistical multiplexing. Chandra divides 

congestion into packet-level and burst-level congestion. 

Packet-level congestion only requires small buffers, 

however congestion due to traffic burstiness and 

correlations requires much larger buffers. For this reason, 

small buffers at lightly multiplexed network edges require 
traffic to be smoothed or paced to avoid burst-level 

congestion and allow smaller buffers. 

Optimizing buffer sizes for various scenarios is still an 

area of research. A trade-off will remain between latency, 

utilization and packet loss—with latency expected to 

become more critical. 

 

4) Packet scheduling 

Packet scheduling can also impact latency. A scheduling 

mechanism allows a network device or end point to decide 

which buffered packet is sent when multiple packets are 

queued. Internet hosts and network devices have by 
default used first-in-first-out (FIFO) scheduling, which 

sends the oldest queued packet first. This can cause head-

of-line blocking when flows share a transmission link, 

resulting in all flows sharing an increased latency. There 

are, however, a wide variety of queue scheduling 

mechanisms and hybrid combinations of mechanisms that 

can either seek to ensure a fair distribution of capacity 

between traffic belonging to a traffic class/flow (class/flow 

isolation), or to prioritize traffic in one class before 

another. These methods can reduce latency for latency-
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sensitive flows. This section does not seek to explore all 

scheduling methods, but will highlight some key 

proposals. 

a) Class based: Some scheduling mechanisms rely on 

classifying traffic into one of a set of traffic classes each 

associated with a ―treatment aggregate‖. Packets requiring 

the same treatment can be placed in a common queue (or 

at least be assigned the same priority). A policy apportions 

the buffer space between different treatment aggregates 

and a policy determines the scheduling of queued packets. 

Different classes of traffic may receive a different quality 
reflecting their latency and other requirements, so 

scheduling with this knowledge can have positive impacts 

on reducing latency for latency-sensitive flows. A router 

or host-based model implements scheduling in individual 

routers/hosts without reference to other devices along the 

network path . This is easy to deploy at any device 

expected to be a potential bottleneck (e.g., a home router), 

although it does not itself provide any end-to-end quality 

of service (QoS). 

A more sophisticated model aligns the policies and classes 

used by the routers across a domain, resulting in two basic 

network QoS models: The differentiated services model 
[7] aligns the policies configured in routers using the 

management plane to ensure consistent treatment of 

packets marked with a specific Differentiated Services 

Code Point (DSCP,) in the IP packet header (i.e. devices 

schedule based only on treatment aggregates). In contrast, 

the integrated services model uses a protocol to signal the 

resource requirements for each identified flow along the 

network path, allowing policies to be set up and modified 

in real-time to reflect the needs of each flow. Both models 

can provide the information needed to control the delay of 

traffic, providing that delay sensitive traffic can be 
classified. The integrated services model is best suited to 

controlled environments, e.g. to control latency across an 

enterprise domain to support telepresence or other latency-

sensitive applications. 

 

Fig1:-Sharing of available capacity by two flows, 

illustrating the different between FIFO, FQ/RR and EDF 

scheduling . Flow F1 has deadline D1 and flow F2 had 

deadline D2 

 

b) Flow based: Flow based queuing allows a scheduler to 

lessen the impact that flows have on each other and to 

discriminate based on flow characteristics. A key example 

of this is Fair Queuing (FQ), proposed by Nagle and 

Demers et al., which aims to improve fairness among 

competing flows. This ensures that queuing delays 

introduced by one (possibly misbehaving) flow do not 

adversely affect other flows, achieving fairness. FQ has 

been adapted and extended in many different ways 

including: weighted FQ, and practical approximations 

such as Round Robin (RR) scheduling and Deficit RR 

(DRR) . In practical implementations, there may be a limit 

to the number of queues that can be implemented, hence 
stochastic fair queuing (SFQ McKenney [8]) and similar 

methods have been proposed to eliminate the need for a 

separate queue for each traffic flow. 

Per-flow classification requires a flow classifier to 

discriminate packets based on the flows to which they 

belong and deduce their required treatment. In the router 

or host-based model this function is performed at each 

router and requires visibility of transport protocol headers 

(e.g. protocol and port numbers), whereas in the 

Differentiated or Integrated models visibility is required at 

the edge of the QoS domain. When tunnels are used, all 

tunnel traffic is generally classified as a single flow (an 
exception could be the use of the IPv6 Flow Label to 

identify sub flows). This can add latency by assigning all 

traffic that uses a VPN tunnel to the same queue, besides 

the obvious processing cost of encryption and decryption. 

c) Latency specific: Some schedulers schedule packets to 

achieve a low or defined latency. The simplest is Last-In-

First-Out (LIFO), which minimizes the delay of most 

packets—new packets are sent with a minimum delay at 

the expense of packets already queued. Unfortunately, this 

method also maximizes the delay variance and reorders 

packets within a flow. 
Deadline-based schemes attempt to bound the latency of a 

queue, e.g. Earliest Deadline First, where jobs (or packets) 

are scheduled in the order of their deadline. for two flows 

with different deadlines; both flows can meet their 

deadlines if the flow with the earliest deadline is scheduled 

first. Unfortunately, these methods fail to provide good 

performance under overload. 

Shortest Queue First (SQF) is a flow/class based scheduler 

that serves packets from the flow/class with the smallest 

queue first. It has been proposed for reducing latency in 

home access gateways. Carofiglio and Muscariello [9] 

show that the SQF discipline has desirable properties for 
flows that send less than their fair share, such as thin 

latency-sensitive flows and short flows, at the expense of 

bulk throughput-sensitive flows. 

d) Hierarchical scheduling: In many networks it is normal 

to create a hierarchy of scheduler treatments, in which 

some classes of traffic are given preferential or worse 

treatment by the scheduler, to achieve different treatments 

for the traffic. For example the Expedited Forwarding 

(RFC 3246) differentiated services class assigns a 

treatment that offers low loss and low latency. Class-based 
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queuing (Floyd and Jacobson [10]), hierarchical packet 

fair queuing [11] and 802.11e QoS enhancements for 

WLANs  provide such methods. Any priority-based 

algorithm needs to correctly classify the traffic in a way 

that guarantees the required treatment. This typically 

requires a policing (or traffic-conditioning) function to 

prevent misuse. In the integrated and differentiated 

services model this conditioning may be provided at the 

domain edge. 

 

5) Traffic shaping and policing 
Traffic shapers smooth traffic passing through them using 

a buffer to limit peak transmission rates and the length of 

time these peak rates can be maintained. While shaping 

can help prevent congestion—and therefore delay further 

along the path—, it does so at the expense of delay 

introduced at the shaper. The foundational traffic shaping 

algorithms are the leaky bucket algorithm and the related 

token bucket algorithm. Traffic shapers are used 

extensively in the Internet, though often to reduce ISP 

costs rather than to reduce delays along the path. 

Traffic policers drop packets that exceed a specified peak 

transmission rate, peak burst transmission time, and/or 
average transmission rate. Policing was first proposed by 

Guillemin et al. [12] for ATM networks, but is still an 

effective tool for managing QoS, especially latency, in the 

Internet. Briscoe et 

al. [13] propose a policing mechanism that could be used 

either to police the sending rate of individual sources (e.g. 

TCP) or, more significantly, to ensure that all the sources 

behind the traffic entering a network react sufficiently to 

congestion, as a combined effect, without constraining any 

flow individually. This developed into the IETF 

Congestion 
Exposure work to enable a number of mechanisms, 

especially congestion-based policing, to discourage and 

remove heavy sources of congestion and the latency they 

cause. 

 

6) Queue management 

Network devices can monitor the size of queues and take 

appropriate action as the queue latency builds; this is 

known as queue management. Techniques such as drop 

tail and drop front are said to be passive. In contrast, 

Active Queue Management (AQM) techniques manage 

queues to achieve certain queue loss and latency 
characteristics by proactively marking or dropping 

packets; which signal to endpoints to change their 

transmission rate. AQM mechanisms generally work in 

combination with scheduling, traffic shaping, and 

transport-layer congestion control. Adams [14] provides 

an extensive survey of techniques from Random Early 

Detection 

(RED Floyd and Jacobson [15]), introduced in 1993, 

through to the year 2011. This section looks at more recent 

contributions, with a specific focus on latency. 

a) PIE and CoDel: Two current proposals aim to minimize 

the average queuing delay: Proportional Integral controller 

Enhanced (PIE Pan et al. [16]) and Controlled Delay 

(CoDel Nichols and Jacobson [17]), and more recently, a 

per-flow queuing version of CoDel called FQ-CoDel. 

 

The PIE algorithm uses a classic Proportional Integral 

controller to manage a queue so that the average queuing 

delay is kept close to a configurable target delay, with a 

current default value of 20 ms. PIE does this by using an 

estimate of the current queuing delay to adjust the random 
ingress packet drop or marking probability. The algorithm 

selftunes its parameters to adapt quickly to changes in 

traffic. PIE tolerates bursts of packets up to a configurable 

maximum, with a current default value of 100 ms. CoDel 

attempts to distinguish between two types of queues, 

which the authors refer to as good queues and bad 

queues— that is, queues that simply buffer bursty arrivals, 

and those just creating excess delay. Although the default 

target delay is 5 ms, it allows temporary buffering of 

bursts which can induce delays orders of magnitude larger 

than the target delay. Packets are dropped or marked at 

deterministic intervals at the head of a queue. 
Dropping/marking at the queue head decreases the time 

for the transport protocol to detect congestion. Combining 

this with the flow isolation of a fair queuing scheduler 

avoids packet drops for lower-rate flows. 

 

Both schemes attempt to keep configuration parameters to 

a minimum, auto tune, and control average queue latency 

to approach a target value. Both exhibit high latency 

during transient congestion episodes. Use of smaller 

buffers would prevent this, but this is an area that requires 

further research. 
 

b) DCTCP and HULL: Data Centre TCP (DCTCP 

Alizadeh et al. [18]) is illustrated in Fig. 2. It uses an 

AQM method that has been designed to keep queuing 

delay and delay variance very low, even for small numbers 

of flows including a single flow. The method appears 

deceptively simple; it merely marks the ECN field of all 

packets whenever the queue exceeds a short threshold. 

The AQM for DCTCP signals even brief excursions of the 

queue, in contrast to other AQMs that hold back from 

signalling until the queue has persisted for some time. 

Even though existing switches often only implement RED, 
they can avoid introducing signalling delay by simply 

setting their smoothing parameter to zero. High bandwidth 

Ultra-Low Latency replaces the AQM algorithm in 

DCTCP. It aims to keep the real queue extremely short by 

signalling ECN when a virtual queue exceeds a threshold. 

A virtual queue is a token bucket- like counter that fills at 

the real packet arrival rate, but drains slightly more slowly 

than the real line. A growing range of commercial 

equipment natively supports virtual queues, often using 

two hardware leaky buckets. 
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7) Transport-based queue control 

A number of transport layer mechanisms have been 

proposed to support low queuing delays along the end-to-

end 

 

 
Fig 2:- How Data Centre TCP (DCTCP) reduces delay 

without lowing utilization 

 
path. Two key elements are: burstiness reduction and early 

detection of congestion. 

a) Coupled congestion control: When multiple flows that 

originate from the same endpoint traverse a common 

bottleneck, they compete for network capacity, causing 

more queue growth than a single flow would. Detecting 

which flows share a common bottleneck and coupling 

their congestion control can significantly reduce latency, 

as shown with an SCTP-based prototype. Solutions in this 

space are planned outcomes of the IETF RMCAT working 

group. 

b) Burstiness reduction: A TCP session that always has 
data to send typically results in paced transmission, since 

the sender effectively paces the rate at which new data 

segments may be sent at, to the rate at which it receives 

ACK packets for old segments that have left the network. 

However, this is not always the case. TCP’s window-

based congestion control together with bottleneck queuing 

can result in very bursty traffic. In some implementations, 

the TCP max burst function limits the maximum burst size 

per received ACK, hence reducing burstiness for bulk 

applications. 

 
However, not all applications continuously have data to 

transmit (e.g. when a server responds to requests for 

specific data chunks, or when a variable rate video session 

experiences a scene change). There may therefore be 

periods in which no TCP data are sent, and hence no 

ACKs are received—or an application may use an entirely 

different transport that does not generate an ACK for 

every few segments. Either of these can result in bursts of 

packets, and may require explicit pacing at the sender or a 

traffic shaper within the network. 

 

III. CONCLUSION 

 

After evaluating all conditions with problems, we 

concluded that if we focus on queue management with 

MAC buffering and packet scheduling then we could 

reduce large phase of our queuing delay problem. 
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